Probabilistic Collision Detection Between Noisy Point Clouds Using Robust Classification
نویسندگان
چکیده
We present a new collision detection algorithm to perform contact computations between noisy point cloud data. Our approach takes into account the uncertainty that arises due to discretization error and noise, and formulates collision checking as a two-class classification problem. We use techniques from machine learning to compute the collision probability for each point in the input data and accelerate the computation using stochastic traversal of bounding volume hierarchies. We highlight the performance of our algorithm on point clouds captured using PR2 sensors as well as synthetic data sets, and show that our approach can provide a fast and robust solution for handling uncertainty in contact computations.
منابع مشابه
Proximity Computations between Noisy Point Clouds using Robust Classification
We present a new approach to perform robust proximity queries between noisy point cloud data. Our approach takes into account the uncertainty that arises due to discretization error and noise, and formulates contact computation as a twoclass classification problem. We use appropriate techniques from machine learning to compute the collision probability for each point in the input data and accel...
متن کامل3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملAccurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network
Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...
متن کاملA novel method for locating the local terrestrial laser scans in a global aerial point cloud
In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011